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ABSTRACT: An investigation of parametrically-excited sloshing in a two-dimensional (2D) rectangular 
tank with finite liquid depth is described. The analysis is based on the adaptive multimodal approach of 
nonlinear sloshing in a rectangular tank, described in Faltinsen and Timokha (2001). Following the stand-
ard adaptive mode ordering, a finite-dimensional system of ordinary differential equations is obtained. 
Third-order polynomial nonlinearities are retained. The external vertical forcing of the tank is assumed 
to be of “sufficiently” small amplitude. The novel part of the work lies in the advanced investigation of 
the nonlinear free surface oscillations that brought to light a new (in parameters space) region of liquid 
surface instability that was up to now considered as quiescent.

(1985), Feng & Sethna (1989), Simoneli & Gollub 
(1989), Henderson & Miles (1990), Nagata (1991), 
Miles (1994), Perlin & Schultz (2000). Different 
numerical approaches to sloshing prediction have 
been reported by Telste (1985), Chen et al. (1996), 
Takizawa & Kondo (1995), Chern et al. (1999), 
Pawell (1997), Turnbull et al. (2003), Wu et al. 
(1998, 2001 and 2007), Fradnsen (2003), Y. Kim 
et al. (2001, 2007) treating the moving free surface 
either by using Lagrangian tracking of free surface 
nodes with regrinding; or by mapping. Both have 
advantages and disadvantages; however a common 
drawback is that they are not the most appropriate 
for long time simulations.

In the current work we have adopted a well-
known semi-analytical method developed by 
Faltinsen and Timokha (2001) that is based on 
modal analysis. However, as our objective here is 
not to advance the modelling of sloshing but to 
deepen into the character of the nonlinear oscil-
lations exhibited by the free surface of a liquid 
in a two-dimensional (2D) rectangular tank with 
finite liquid depth, a direct method for capturing 
nonlinear steady dynamics is coupled to the hydro-
dynamic model. More specifically, we couple the 
model with a “continuation analysis” algorithm of 
nonlinear dynamics in order to predict (in a single 
run) the amplitudes of steady liquid surface oscil-
lations as the frequency and/or the amplitude of 
excitation are varied, without performing multiple 
simulations (which would not capture the unsta-
ble oscillations anyway). The focus is on deter-
mining the region of parameters’ values where 
free surface activity takes place (termed here as 

1 INTRODUCTION

Parametrically excited engineering systems can 
often exhibit dangerous behaviour (Ibrahim 1985). 
Parametric sloshing is the motion of a liquid’s free 
surface due to an excitation perpendicular to the 
plane of the undisturbed free surface. Such verti-
cal excitation of ship tanks could be produced by 
the heaving motion in a seaway. In our case the 
heave is considered as a harmonic function. This 
arises physically in combination with excitations in 
other modes of ship motion; for example in pitch 
and in roll. In the current work we have consid-
ered however the heave excitation alone in order to 
clarify the free surface dynamics under pure para-
metric excitation. The issue is not new, yet it is less 
often considered as important compared to cases 
of directly excited sloshing (Dodge 1966). In an 
investigation of parametric sloshing the nonlin-
ear treatment of the free surface is very essential; 
otherwise unrealistic infinite free surface displace-
ments will be uniformly predicted inside the insta-
bility region.

A concise overview of research concerning the 
nonlinear behaviour of liquids contained in tanks 
of various shapes and subjected to parametric 
excitation can be found for example, in the book 
of Ibrahim (2005). Standing waves generated in 
vertically oscillating tanks were firstly studied 
experimentally by Faraday (1831), Mathiessen 
(1868, 1870) and Lord Rayleigh (1883a & b, 1887). 
The same problem was investigated theoreti-
cally by Lewis (1950), Taylor (1950), Benjamin & 
Ursell (1954), Konstantinov et al. (1978), Nevolin 
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“region of instability”). For the model that we use, 
this region of instability is predicted to be more 
extended than the one associated with linear para-
metrically excited systems (as described for exam-
ple in Benjamin & Ursell 1954). The unique feature 
of the newly discovered region is that it is initial-
conditions-dependent i.e., one may obtain a stable 
surface wave or a flat surface depending on the 
exact state of the free surface when the harmonic 
excitation was firstly applied.

2 FORMULATION OF THE PROBLEM

We consider a mobile, rectangular, smooth and 
rigid tank, filled partly by an inviscid, incompress-
ible fluid. Liquid depth is finite; but the tank top 
is high enough so that it is never reached by the 
moving liquid. The flow is two-dimensional and 
irrotational. The origin of the coordinate system 
is placed at the middle of the mean free surface 
(Figure 1).

The problem of sloshing of an incompress-
ible fluid with irrotational flow when part of the 
boundary (the free surface) is free to move is for-
mulated in the standard manner in terms of the 
Laplace equation in the fluid, with suitable bound-
ary conditions:
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Q(t) is the fluid volume, Σ(t) is the free surface 
which is associated with the equation Z(y, z, t) = 0, 
S(t) is the tank surface below Σ(t), t is time, Φ(y, z, t) 

is the velocity potential in the reference frame, and 
n  is the unit vector that is normal to S(t). Tank’s 
velocity is 

� � �
u n e0 3n 3( )tt = nn , where n3 is the magnitude 

of external excitation and 
�
e3 is the unit vector in 

the z- axis.

3 NONLINEAR ASYMPTOTIC ADAPTIVE 
MODAL ANALYSIS

The multimodal method uses a Fourier series rep-
resentation of the solution with time-dependent 
unknown coefficients. The sloshing problem is 
expressed by means of two functions, describing 
the free-surface elevation and the velocity poten-
tial. Faltinsen et al. (2000) postulated their Fourier 
series representations as follows:
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The modal representation (2) is based upon 
the functions { fi} and {ϕi} which must provide 
“complete” sets on the mean free surface and the 
whole tank domain, respectively. The most com-
mon choice for the basis {ϕi} is the set of linear 
natural modes. However, the natural modes are 
theoretically defined only in the unperturbed 
hydrostatic domain. In view of this problem, we 
interpret the natural modes as an asymptotic 
basis, assuming that the free surface is, to some 
extent, asymptotically close to its unperturbed 
state (Faltinsen & Timokha, 2009). In our case the 
modal basis fi(y) and the set of functions ϕi(y, z) 
coincide with the linear natural sloshing modes (3) 
as derived by Faltinsen & Timokha (2002).
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By using the asymptotic non-linear modal the-
ory we obtain an infinite-dimensional system of 
nonlinear differential equations (modal system). 
Following the adaptive approach proposed by 
Faltinsen & Timokha (2001), this modal system 
could be asymptotically reduced to an infinite-
dimensional system of ODEs. An important fact 
is that asymptotically truncated systems may use 
natural modes because the procedure needs only 

Figure 1. The origin of the coordinate system is placed 
at the middle of the mean free surface. Tank length and 
height are denoted by l, h respectively. Tank is free to 
move in the z-axis.
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the completeness of ϕn(y, z) in the unperturbed 
liquid domain (Faltinsen & Timokha, 2002). 
If, in the first instance, nonlinear terms are kept 
only up to third-order, the considered system 
comes to the following form in the case of vertical 
excitation:
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where δ stands for Kronecker’s delta and p, q, r are 
upper summation limits. The d and t coefficients 
can be expressed as functions of the ratio of liquid 
depth to tank breadth (such analytical expressions 
can be found in Faltinsen and Timokha 2001). 
σμ represents the μth natural frequency and is given 
(Faltinsen & Timokha, 2009) by the equation:
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Furthermore, by using the condition βn = Ο(ε1/3), 
βi = O(ε), i ≥ n + 1 we could introduce more than 
one dominant mode (in contrast with a Moiseev-
like ordering). This leads to a finite-dimensional 
nonlinear modal system that will be called from 
here on “Model-k”, where the integer k denotes 
the number of dominant modes. The coefficient 
ε = n3α/l is an indicator of the smallness of excita-
tion. Here it is assumed that ε << 1.

4 LINEAR MODEL

Linearization of the modal system (Equation 4) 
leads to the following set of uncoupled modal 
equations:
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By assuming harmonic excitation n3 = n3α cos(σt), 
Equation 6 comes to the form of a set of Mathieu-
type equations. Let us now restrict our investiga-
tion to the case of vertical excitation with relatively 
small amplitude, with excitation frequency in the 
vicinity of the principal parametric resonance of 
the first mode; i.e. (σ1/σ)2 ≈ 1/4.

We also choose the tank’s height-to-breadth-
ratio to be larger than the critical depth 

(h/l = 0.03368) restricting our investigation to finite 
liquid depth. We do this because, according to 
Fulzt (1962), in the vicinity of critical depth strong 
changes and amplifications in the liquid behaviour 
occur.

It is remarked that Faltinsen and Timokha 
(2009) have introduced to Equation 6 an empirical 
linear damping term, represented by the damping 
ratio ζ1. From a physical perspective, this damping 
term could empirically account for boundary–layer 
damping. Incorporating such damping, the linear 
modal equation for the dominant mode β1 obtains 
the following form:

�� �β σ ζ β σ σ σ β1 1β σβ ζ1 1ζ βζ 1
2 3

2

11ζ β σ1
2 0σσ ζ β1σ 1ζ βζ − ⋅

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦

⎤⎤

⎦⎦
=n

g
a cos(  (7)

Benjamin and Ursell (1954) had investigated the 
free surface elevation under similar forcing, using 
Mathieu functions for expressing analytically the 
solution. As well known, depending on param-
eters’ values, a system described by Equation 7 
could exhibit stable as well as unstable behaviour.

Frandsen (2004) considered the case of a 
rectangular tank under vertical forcing and 
checked the stability of the free surface by using 
two-dimensional CFD simulations. She has shown 
that the prediction of the stable regions is in good 
agreement with Benjamin and Ursell’s (1954) pre-
dictions when the forcing parameter is small. If  the 
excitation amplitude is raised, nonlinearities due 
to intermodal interaction have to be considered.

In Figure 2 is shown the well-known stability 
chart that corresponds to Equation (7), for damp-
ing ratio ζ1 = 0.02. The linear model entails that, to 
the interior of the curve a solution is unstable and 
diverges to infinity; whereas every point outside 
the curve corresponds to a stable steady solution, 
in the sense of having the liquid surface maintained 
flat and horizontal.
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Figure 2. Stability map for the Mathieu type Equation 7, 
for damping ratio ζ1 = 0.02.
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As realised, β1 stands for the time-dependant 
response of the free surface. In what follows we 
track the elevation of free surface at y = −l/2; i.e., 
at its interface with the left tank wall. To obtain 
the elevation for all other points (y, 0) of the liquid 
surface β1 should be multiplied by cos(π(y + l/2)/l).

5 NON-LINEAR MODEL (MODEL-1)

For mode ordering β1 = Ο(ε1/3), βμ = O(ε), μ >1, and 
by retaining only β1 following the same thinking 
like before, the system of Equations 4 generates the 
following form (“Model-1”):
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As in the linear model case, a damping term 
has been introduced. Assuming harmonic exter-
nal excitation n3 = n3αcos(σt) with small amplitude, 
Equation (8) becomes:
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As observed, the above non-linear system is the 
same as the linear plus two non-linear terms that 
feature products of the surface elevation with the 
corresponding acceleration and with the corre-
sponding velocity. This makes this problem some-
how different from several others that are also 
modeled through a Mathieu-type equation [e.g., 
for ships’ parametric rolling investigations we usu-
ally include nonlinearity only n the stiffness term, 
Spyrou et al. (2008). It is remarked that all other 
nonlinear terms of Equation (4) are not present 
because their coefficients, according to the current 
approximation, are equal to zero. The only non-
zero nonlinear term parameter is d2.

The nonlinear model of Equation (9) was 
derived by following the adaptive approach. With 
the restrictions described above, the same equation 
could have been produced from the single domi-
nant mode approach, also introduced by Faltinsen 
et al. (2000). If  large-amplitude response occurs; 
or if  the tank-height-to depth-ratio is equal or 
smaller than the critical depth; or lastly if  second-
ary resonance occurs, the assumption of lowest 
order dominant mode collapses. In such cases, the 
adaptive approach is the way to follow for model 

derivation (Faltinsen and Timokha 2002). We have 
thus selected to follow the adaptive method, in 
order to maintain the prospect of comparison of 
our results against those produced from higher 
order models that we are concurrently investigat-
ing (not included in this paper).

6 CONTINUATION ANALYSIS 
FOR THE NON-LINEAR MODEL

“Continuation” algorithms usually accept the 
mathematical model in the so called “autonomous 
canonical form”:

dx

dt
f x b= ;x )  (10)

Here x and b are, respectively, the state and con-
trol parameters’ vectors of our problem. Variation 
of one or more components of the control vector 
b creates, through solution of the above vector dif-
ferential equation, branches of steady-state (in our 
case periodic) solutions. These branches constitute 
the ‘‘spine’’ of the dynamical response of the sys-
tem. It is thus imperative to be able to trace such 
branches of steady-states efficiently, even when 
nonlinearities are strong and multiplicity of 
steady solutions arises. For such types of inves-
tigation “continuation” is a truly indispensable 
tool. The specific algorithm implemented here is 
“MATCONT”. For mathematical details Dhooge 
et al. (2003) can be consulted.

The basic mathematical model expressed thr-
ough Equation (8) is characterised by explicit time-
dependence in the restoring term. Thus, it is not 
in the autonomous form of Equation (10) entailed 
by the continuation algorithm. To overcome this, 
a suitable additional pair of differential equations 
is introduced with respect to the dummy variables 
x = sin(σt), y = cos(σt). Thereafter, Equation (9) can 
be converted into the following system of four 1st-
order ordinary differential equations that, whilst 
being equivalent to Equation (10), is not character-
ised by explicit time-dependence (Spyrou & Tigkas 
2011):
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Due to the cubic nonlinearity of Model-1, 
inside the unstable region one should expect a sta-
ble limit cycle. Selecting such limit cycle as initial 
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state (this is easily captured through simulation) 
we can use the continuation method to produce 
the dependence of that “cycle” from the excita-
tion amplitude and/or frequency, while restricting 
ourselves to the region of small amplitudes so that 
we don’t violate the assumption of relatively small 
surface elevation that is intrinscic to the model. 
Such a continuation analysis result is presented 
in Figure 3. It is observed that there is an excita-
tion region where two different limit cycles coex-
ist. The limits of this region is determined by two 
bifurcation points. When the excitation amplitude 
increases from zero and until the first bifurcation 
is met (“limit point of cycles”), there isn’t any limit 
cycle. This is the area where a stable flat condition 
is possible for the water surface.

As the amplitude continues to increase, two 
coexisting limit cycles are suddenly met, one sta-
ble and one unstable. The stable one gets gradually 
larger as the excitation is increased. The other limit 
cycle shrinks till the second bifurcation point (that 
is of “subcritical” type) where it disappears. On the 
basis of Figure 3 we have extracted Figure 4 that 

summarizes the dependence of surface elevation 
upon the excitation amplitude n3α. It is remarked 
that subcritical bifurcations are associated with 
hysteretic behaviour as explained next:

As the excitation amplitude increases from 
the zero value to the bifurcation point A, the 
liquid-free-surface amplitude will jump in a fast 
dynamic transition to point C right after A is 
reached. As the excitation level is further increased, 
the amplitude also increases monotonically 
along the solid curve CD. If, on the other hand, 
the excitation begins to decrease while the liquid 
free surface is in a state in the neighbourhood 
of point C, the surface amplitude will decrease 
along the curve DCB until the point B is reached. 
Figure 4 has a qualitatively similar form with one 
by Ibrahim (2005) who had targeted an approxi-
mation of the solution according to a perturbation 
technique.

To investigate the stability of these periodic 
solutions the formal choice is to perform calcu-
lation of Floquet multipliers. But we can also 
get some strong indication about the stability of 
periodic solutions by simply selecting some forc-
ing level that lies in between the two Branch points 
of Cycles (BPC); and then integrating the non-
linear system under different initial conditions. 
As expected from nonlinear dynamics, one of the 
limit cycles (the outer) is stable and the other one 
(the inner) is unstable. In Figure 5 is presented the 
time history of β1 for two slightly different initial 
conditions. Initial elevation β1 = 0.091 m (with zero 
initial vertical velocity of the surface) leads to a 
stable (zero) point; i.e., there is attraction towards 
the stationary state.

On the other hand, an initial elevation 
β1 = 0.095 m leads to a stable periodic pattern.

Working in a similar manner for more than 
one frequency we are able to demonstrate the 

Figure 3. Limit-cycle dependence on excitation amplitude 
(n3α, β1), for σ = 9.7 rad/s. There is an excitation region deter-
mined by the point of creation of limit cycles and the fold 
(limit point) of cycles (the two Branch points of Cycles) 
where two different limit-cycles coexist (one unstable).

Figure 4. Dependence of the response amplitude 
(y-axis) on the excitation amplitude n3α (x-axis). Depend-
ence has a qualitatively similar form with that extracted 
by Ibrahim (2005).

Figure 5. Time history of β1 for σ = 9.7 rad/s and 
n3α = 0.02. Initial elevation β1 = 0.091 m (solid line) leads 
to a stable (zero) point and β1 = 0.095 m (dot line) leads 
to a stable periodic pattern.
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steady dynamic behavior of the autonomous 
nonlinear system represented by Equation (11), 
in the frequency region that surrounds σ = 2σ1. 
In Figure 6 is summarised this behaviour. As one 
expects, for small frequency every excitation ends 
up to a stable point. Increase of the excitation fre-
quency leads, through a fold of limit-cycles bifur-
cation, to an initial-conditions-dependent area 
(Figure 6-Left) where a stable and an unstable 
limit-cycle coexist. Further increase of frequency 
leads, through the subcritical bifurcation men-
tioned earlier, to the “classical” area of instability 
associated with principal parametric resonance 
(Figure 6-Right), where the unstable limit-cycle 
disappears and the stable trivial solution becomes 
unstable. Lastly, a supercritical (“smooth”) 
bifurcation locus represents in fact the boundary 

with the stability area to the right of the “classical” 
linear instability area.

Incorporating the above observations into the 
stability chart of the linear Mathieu-type system 
we obtain the diagram of Figure 7. If  we compare 
Figure 7 against the similar result of Benjamin 
and Ursell we see that a new initial-condition-
dependent area (area C) has been added. As a 
result, the forcing-versus-frequency parameters’ 
plane is divided into three areas that are identified 
in Figure 7. Area A is the stable one where every 
external excitation (with the fitting specification) 
leads invariably to a flat liquid surface. Area B is 
the classical area of instability where external exci-
tation generates periodic oscillations of the free 
surface. Area C is the initial-condition-dependent 
area, (in terms of β1 and ϕ1) where the same external 

Figure 6. Phase diagram (ϕ1, β1) for different excitation frequencies, ζ1 = 0.02 m and n3a = 0.02 m. Left: initial-condition-
dependent area for excitation frequency σ = 9.7 rad/sec. The unstable limit cycle drives the behaviour of the system 
either to a stable fixed point or to a stable limit cycle, Right: typical behavior in the classical unstable area for excitation 
frequency σ = 10.2 rad/sec. Every excitation ends to a stable limit-cycle.

Figure 7. Stability chart for the nonlinear Model-1 system (ζ1 = 0.02). A new initial-condition-depended area 
(indicated by C) is added to the linear stability chart. Inside C, one may obtain a stable surface wave or a flat surface 
depending on how the free surface looked like when the harmonic excitation was firstly applied.
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excitation leads either to a quiescent surface or to a 
wavy one. The phase space structure of the consid-
ered dynamical system is quite a common one. The 
domains of attraction of the two competing stable 
patterns occupy certain complementary regions 
of phase space. They are separated by a surface 
defined by the incoming (stable) manifold of the 
unstable periodic solution.

7 CONCLUSIONS

2-D liquid sloshing in a rectangular and vertically 
excited tank has been investigated. A non-linear 
model has been used, based on modal modelling 
and according to the adaptive analysis of Faltinsen 
and Timokha (2001). The work was limited to 
finite liquid depth, corresponding to a tank-height-
to-depth-ratio of 0.4. A global picture of liquid 
surface dynamics was obtained, befitting to model 
nonlinearities retained up to third-order. A new 
area of bi-stability should be added to the stability 
chart of free surface oscillations. Investigation of 
the influence of the damping term on the size of 
that area is currently in progress.

A first step towards confirming the validity of 
results will be the investigation of the dynamic 
behaviour associated with the immediately higher 
order non-linear model. That should allow elicita-
tion of the liquid surface dynamics and the associ-
ated stability properties without severe limitations 
on the excitation amplitude or frequency. Areas of 
secondary resonance (higher excitation frequency) 
and also the chaotic areas (higher excitation ampli-
tude) discussed by Ibrahim (2005) are also very 
interesting topics of further research. These could 
not be considered here, partly due to time limita-
tions and partly due to limitations of the model.

Of course, experimental reproduction of the 
identified types of numerical solutions will be 
required before these are considered as established 
patterns of the behaviour of the physical system 
under consideration.
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